Instructions for Choice and Use of Rubber Vibration Damper

Features

These dampers will abate the noise or protect the perimeter machines from vibration. And increase service life of the machinery equipment.

Technical Information

- Working temperature: -40 to 80°C
- The max. load for horizontal use must be considered as the 30% of the max. load for vertical use.

Notes

- It is not recommended to use these dampers in environments where sunlight, humidity, acids or chemical agents are present.
- Ensure that the deflection of each mounted dampers are even.
- These dampers must not be used for tensil direction.
- The white powdery blooming on the surface of the rubber is normanl and does not affect function or quality of these dampers.
- The rate of deterioration of rubber vibration dampers depends on usage environments or conditions.
- Ensure to check the following points regurally.
 - Appearance (cracks or flakings)
 - Rubber elasticity

Determining Rubber Vibration Damper

1. From the below graph, obtain the deflection value from an intersection of the machine frequency (Hz = r.p.m./60) and the vibration absorption ratio.
2. Divide the load on each damper by the deflection value to calculate the required spring constant (N/㎜).
3. Choose a proper damper whose spring constant calculated is closest to that of listed in the table on each catalog page.

Choice of Proper Rubber Vibration Damper

Usage conditions

- Frequency of machine: 50Hz (3,000 r.p.m.)
- Load applied on each rubber vibration damper: 120N
- Required rate of vibration absorption: 90%
- Demanding type of rubber vibration damper = VD1

Steps for Determining Rubber Vibration Damper

1. In the graph, an intersection of the machine frequency 50Hz and the vibration absorption ratio 90% indicates the deflection value of 1.0mm.
2. Derive the required spring constant by dividing the load on each damper by the deflection value.
 \[\frac{120}{1.0} = 120 \text{N/㎜} \]
3. Check the spring constant in table on each catalog page and choose the damper whose spring constant is closest to the calculated value 120N/㎜. The demanding type VD1 as in the usage condition determines the proper damper is VD1-2520M6.

Diagram

- Graph showing the relationship between frequency of machine (Hz), number of revolutions (r.p.m.), and vibration absorption ratio (%). The resonance range is indicated.
- A red dot at 50Hz and 90% indicates the deflection value of 1.0mm.
- A calculation example: \[\frac{120}{1.0} = 120 \text{N/㎜} \]
- The proper damper is determined as VD1-2520M6 based on the calculated spring constant.